DPP - 3 (Electrostatics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/93
Video Solution on YouTube:-
https://youtu.be/pjM0c6p6iW4

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/39

Q 1. Three point charges $q,-2 q$ and $-2 q$ are placed at the vertices of an equilateral triangle of side a. The work done by some external force to increase their separation to $2 a$ will be
(a) $\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{2 q^{2}}{a}$
(b) negative
(c) zero
(d) $\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{3 q^{2}}{a}$

Q 2. Four equal charges of magnitude q each are placed at four corners of a square with its centre at origin and lying in y-z plane. A fifth charge $+Q$ is moved along x-axis. The electrostatic potential energy (U) of system varies on shifting $+Q$ on x-axis as:

(a)

(b)

(c)

(d)

Q 3. Two identical particles of charge q each are connected by a massless spring of force constant k. They are placed over a smooth horizontal surface. They are released when the separation between them is r and spring is unstretched. If maximum extension of the spring is r, the value of square root of k is: (neglect gravitational effect)

(a) $\frac{q}{4 r} \sqrt{\frac{1}{\pi \varepsilon_{0} \eta}}$
(b) $\frac{q}{2 r} \sqrt{\frac{1}{\pi \varepsilon_{0} r}}$
(c) $\frac{2 q}{r} \sqrt{\frac{1}{\pi \varepsilon_{0} r}}$
(d) $\frac{q}{r} \sqrt{\frac{1}{\pi \varepsilon_{0} r}}$

Q 4. Two point positive charges q each are fixed at $(a, 0)$ and $(-a, 0)$. A third point positive charge Q is placed at origin. Electrostatic potential energy of the system will:
(a) increase if Q is slightly displaced along x-axis
(b) decrease if Q is slightly displaced along x-axis
(c) increase if Q is slightly displaced along y - axis
(d) decrease if Q is slightly displaced along y-axis

Q 5. In the electric field due to a point charge q, a test charge is carried from A to the points B, C, D and Elying on the same circle around q. The work done is

hysicsaholics

(a) the least along $A B$
(b) the least along $A D$
(c) zero along any of the paths $A B, A D, A C$ and $A E$
(d) the least along AE

Q 6. The diagram shows a small bead of mass m carrying charge q. The bead can freely move on the smooth fixed ring placed on a smooth horizontal plane. In the same plane a charge $+Q$ has also been fixed as shown. The potential energy of system when bead is at the point P is U. The velocity with which the bead should projected from the point P so that it can complete a circle should be greater than

(a) $\sqrt{\frac{6 U}{m}}$
(b) $\sqrt{\frac{\hat{\theta}}{m}}$
(c) $\sqrt{\frac{3 U}{m}}$
(d) None of these

Q 7. A particle of mass $1 \mathrm{~kg} \&$ charge $\frac{1}{3} \mu \mathrm{C}$ is projected towards a non-conducting fixed charge $\left(\frac{1}{3} \mu \mathrm{C}\right)$. Initially the point charge is far away from the sphere Impact parameter [Initial perpendicular distance of line of projection from Fixed charge] is 0.5 mm . Find the minimum initial velocity of projection required if minimum distance between two particles in subsequent motion is 1 mm ?

Fixed Point Charge

年
(a) $\sqrt{\frac{2}{3}} \mathrm{~m} / \mathrm{s}$
(b) $2 \sqrt{\frac{2}{3}} \mathrm{~m} / \mathrm{s}$
(c) $\frac{2}{3} \mathrm{~m} / \mathrm{s}$
(d) $4 \sqrt{\frac{2}{3}} \mathrm{~m} / \mathrm{s}$

Q 8. Three Positive point charges $1 \mu \mathrm{C}, 2 \mu \mathrm{C}$ and $8 \mu \mathrm{C}$ are to be placed on a 9 cm long straight line. Minimum possible electrostatic potential energy of system is
(a) 1.6 J
(b) 2.6 J
(c) 3.4 J
(d) None of these

Q 9. A particle of mass m charge q is projected from large distance with velocity v towards another particle of mass m and charge $2 q$ along line joining them. Second particle was initially stationary. Velocity of second particle after long time will be
(a) $\mathrm{v} / 4$
(b) $\mathrm{v} / 2$
(c) $v / 3$
(d) v

Q 10. Two paricles are released from infinte separation. First particle has mass m charge $+q$ and second particle has mass $2 m$ and charge $-Q$. Due to electrostatic force they move towards each other. There relative velocity at separation x is
(a) $\sqrt{\frac{2 k Q q}{m x}}$
(b) $\sqrt{\frac{3 k Q q}{m x}}$
(c) $\sqrt{\frac{k Q q}{2 m x}}$
(d) $\sqrt{\frac{2 k Q q}{3 m x}}$

Answer Key

Q. 1	c	Q. 2	b	Q. 3	b	Q. 4	a,	d	Q. 5
(c								
Q. 6	a	Q. 7	b	Q. 8	c	Q. 9	d	Q. 10	b

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI

18 months
No cost EMI

12 months
12 months
No cost EMI
₹3,208/mo
₹ 38,500
₹ $4,667 / \mathrm{mo}$
₹ 28,000
6 months
No cost EMI

To be paid as a one-time payment
View all plans
9
Add a referral code

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
\times Study Planner
₹ $2,100 / \mathrm{mo}$ +10\% OFF ₹50,400

$$
+10 \% \text { OFF ₹ } 42,525
$$

12 months	₹ $2,888 / \mathrm{mo}$
No cost EMI	$+10 \%$ OFF ₹ 34,650

6 months
No cost EMI
₹ $4,200 / \mathrm{mo}$

$$
+10 \% \text { OFF ₹ } 25,200
$$

To be paid as a one-time payment
Use code PHYSICSLIVE to get 10\% OFF on Unacademy PLUS.

Written Solution

DPP-3 Electrostatics : Electrostatic Potential Energy By Physicsaholics Team

Q1) Three point charges $q,-2 q$ and $-2 q$ are placed at the vertices of an equilateral triangle of side a. The work done by some external force to increase their separation to 2 a will be

$$
\begin{aligned}
V_{i}= & -\frac{2 k q^{2}}{a} \times 2 \\
& +\frac{4 k q^{2}}{a} \\
= & 0
\end{aligned}
$$

(a) $\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{2 q^{2}}{a}$

(c) zero $W=\Delta U=V_{g}-\nabla_{i}$

(b) negative
(d) $\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{3 q^{2}}{a}$

Q2) Four equal charges of magnitude q each are placed at four corners of a square with its centre at origin and lying in $y-z$ plane. A fifth charge $+Q$ is moved along $x-$ axis. The electrostatic potential energy (U) of system varies on shifting +Q on x -axis as:
(a)

P.E. of pairs of charges
(c)

Q3) Two identical particles of charge q each are connected by a massless spring of force constant k . They are placed over a smooth horizontal surface. They are released when the separation between them is r and spring is unstretched. If maximum extension of the spring is r, the value of square root of k is: (neglect

(a) $\frac{q}{4 r} \sqrt{\frac{1}{\pi \varepsilon_{0} r}}$
(c) $\frac{2 q}{r} \sqrt{\frac{1}{\pi \varepsilon_{0} r}}$

$$
\begin{aligned}
& \text { by Ohrervation of M. energy } \rightarrow \\
& 0+0+\frac{q^{2}}{4 \pi \epsilon_{0} \gamma}=0+\frac{1}{2} k \gamma^{2}+\frac{q}{4 \pi \epsilon_{0} \times 2 \gamma} \\
& \frac{q^{2}}{\pi \times 4 \pi \epsilon_{0} \gamma}=\frac{1}{2} k \gamma^{2} \quad K=\frac{q^{2}}{4 \gamma^{2} \times \pi f_{0} \gamma}
\end{aligned}
$$

Q4) Two point positive charges q each are fixed at ($\mathrm{a}, 0$) and ($-\mathrm{a}, 0$). A third point positive charge Q is placed at origin. Electrostatic potential energy of the system will:

(a) increase if Q is slight 5 displaced along x-axis
(b) decrease if Q is slightly displaced along x-axis
(c) increase if Q is slightly displaced along y-axis

$$
\begin{aligned}
& d W_{\text {ext }}=+V e \\
& \Rightarrow V \uparrow
\end{aligned}
$$

(d) decrease if Q is slightly displaced along y-axis

Q5) In the electric field due to a point charge q , a test charge is carried from A to the points B, C, D and E lying on the same circle around q. The work done is

$$
W=\Delta U=0 \text { in all caspys }
$$

(a) the least along $A B$
(b) the least arong AD

(e) zero along any of the paths $\mathrm{AB}, \mathrm{AD}, \mathrm{AC}$ and AE
(d) the least along AE

Q6) The diagram shows a small bead of mass m carrying charge q. The bead can freely move on the smooth fixed ring placed on a smooth horizontal plane. In the same plane a charge +Q has also been fixed as shown. The potential energy of system when bead is at the point P is U. The velocity with which thechead should projected from the point P so that it can complete a circle should be greater thann ${ }^{1 \mathrm{~F}}$

Q7) A particle of mass $1 \mathrm{~kg} \&$ charge $\frac{1}{3} \mu \mathrm{C}$ is projected towards a non conducting fixed charge $\left(\frac{1}{3} \mu \mathrm{C}\right)$. initially the point charge is far away from the sphere Impact parameter [Initial perpendicular distance of line of projection from Fixed charge] is 0.5 mm . Find the minimum initial velocity of projection required if minimum distance between two paxticles in subsequient motion is 1 mm ?

Q8) Three Positive point charges $1 \mu \mathrm{C}, 2 \mu \mathrm{C}$ and $8 \mu \mathrm{C}$ are to be placed on a 9 cm long straight line. Minimum possible electrostatic potential energy of system is

(a) 1.6 J
(b) 2.6 J
(c) 3.4 f
(d) None of these

$$
V_{\min }=9 \times 10^{9}\left[\frac{16 \mu^{2}}{9 \times 10^{-2}}+\frac{4}{8 \mu^{2}} \frac{2 \mu^{2}}{3}+\frac{2 \mu^{2}}{3 \times 10^{-2}}\right]
$$

$=\frac{g / \times 10^{9} \mu^{2}}{10^{-2}}\left[\frac{16+12+6}{g}\right]$
$=10^{-1} \times 34$
$=3.4 \mathrm{~J}$

$$
\begin{aligned}
18-2 x & =x \\
3 x & =18 \\
x & =6
\end{aligned}
$$

from large distance.
Q9) A particle of mass m charge q is projected from large distance with velocity v towards another particle of mass m and charge $2 q$ along line joining them. Second particle was initially stationary. Velocity of second particle after long time will be

momentum \& mechanicul energy are Conserved. in both Cases.
(a) v/4
(b) $v / 2$
(c) $v / 3$
(d) v
equal mass, elastic collision.
$V_{1}=0, V_{2}=V$
K.E. of two particle system from cM frame. $=\frac{1}{2} h V_{r a s}^{2}$ Q10) Two particles are released from infinte separation. First particle has mass $m_{A}=m_{1} m_{1}+m_{2}$ charge +q and second particle has mass 2 m and charge $-Q$. Due to electrostatic force they move towards each other. There relative velocity at separation x is $=\frac{m \times 2 m}{3 m}$

(c) $\sqrt{\frac{k Q q}{2 m x}}$ Here C.M. is Method \rightarrow Inertial.
(d) $\sqrt{\frac{2 k Q q}{3 m x}}$ by (.O. Me from cNN. frame \rightarrow
dst Method \rightarrow $=2 \mathrm{~m} / 3$
by Conservation of momentum

$$
\begin{aligned}
& 0+0=m v_{1}-2 m v_{2} \\
& v_{1}=2 v_{2}--(1)
\end{aligned}
$$

by Conservation of M. energy

$$
\begin{aligned}
0+0= & \frac{1}{2} m v_{1}^{2}+\frac{1}{2} \times 2 m v_{2}^{2} \\
& -\frac{K Q q}{x}--(11)
\end{aligned}
$$

$$
\begin{aligned}
& 0=\frac{1}{2} \mu V^{2}-\frac{K Q q}{x} \\
& \frac{1}{2} \times \frac{k m}{3} V^{2}=\frac{k \phi q}{x} \Rightarrow V=\sqrt{\frac{3 K Q q}{\ln x}}
\end{aligned}
$$

$V=V_{1}+V_{2}$ $=$?

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/93

Video Solution on YouTube:-
https://youtu.be/pjM0c6p6iW4

Written Solution on Website:-

Chalo Nikis

